Calculating Specific Heat

Here is a video showing how to do this in a generic sense Here is a video showing how to use a databot.

This meets Idaho Standard: HS-PSP-2.4 Students who demonstrate understanding can: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more

_			-		
D	ra	~~	А.	ire	٠.

	iform energy distribution among the components in the system (second law of ermodynamics).					
Pr	ocedure:					
1.	Fill a beaker with water and heat to boiling on a hot plate.					
2.	Put 100 mL of water in a styrofoam cup.					
3.	Open Vizeey on your cell phone or chromebook.					
4.	Begin temperature collection					
5.	Record the temperature of the water in the styrofoam cup					
6.	Collect a metal cube and record its mass					
7.	Using tongs, put the cube into the boiling water.					
8.	Record the temperature of the boiling water					
9.	Using tongs, transfer the cube from the boiling water to the styrofoam cup.					
10	Record the highest temperature reached by the water in the cup					
Da	ata Analysis:					
1.	Calculate the temperature change of the water					
2.	Calculate the heat gained by the water. $Q = mc\Delta T$ The specific heat of water is 4.18 J/g·°C.					
	How much heat was released by the metal block? (Hint: where did the water get the eat?)					
4.	Calculate the temperature change of the metal					
5.	Calculate the specific heat of the metal.					

^	1 1 0		.6. 1 (6.0)	4 1	· · · ·
6.	Look up the accep	pted value for the	specific heat of the	e metai you are	: using.Long Text

7. Calculate the percent error. % error = $\frac{Experimental - Accepted}{Accepted}$ x 100

8. How might you change what you did to reduce the percent error?_____